Influence of Dominance Relationships on the Estimation of Dominance
Variance with Sire-Dam Subclass Effects!

N. Gengler*2, L. D. Van Vleck’, M. D. MacNeil* I.

Misztal®, and F. A. Pariacote*

*Department of Animal Science, University of Nebraska, Lincoln 68583;
fRoman L. Hruska US Meat Animal Research Center, ARS, USDA, University of Nebraska,
Lincoln 68583; *Ft. Keogh Livestock and Range Research Laboratory, ARS, USDA,
Miles City, MT 59301; and SDepartment of Animal and Dairy Science,
University of Georgia, Athens 30602

ABSTRACT: Two data sets from the USDA
Livestock and Range Research Laboratory were ana-
lyzed to study dominance variance and the influence of
dominance relationships. The first consisted of 4,155
birth weight (3,884 weaning weight) records of inbred
USDA Line 1 Herefords. The second consisted of 8,065
birth weight (7,380 weaning weight) records from a
line-cross experiment with five lines. Two models were
used. Both included fixed effects of year-sex of calf and
age of dam, and covariates for calving date, inbreeding
of animal, and inbreeding of dam. For the second set,
additional covariates were line composition and heter-
ozygosity coefficients. Random effects were direct and
maternal additive genetic, maternal permanent en-
vironment, sire-dam subclass, and residual. Model 1
considered sire-dam subclasses unrelated. Model 2
related sire-dam subclasses with a parental
dominance relationship matrix. Variance components
were estimated using REML. Differences between

estimates with Model 1 and 2 were unimportant
except for dominance variance. For the first data set,
estimates with Model 2 of relative genetic direct and
maternal variances, direct-maternal correlation, per-
manent environment, and dominance variances for
birth weight were .35, .13, -.02, .03, and .25,
respectively, and they were .39, .11, .04, .06 and .14
for the second data set. For weaning weight, the first
data set estimates were .20, .15, -.37, .19, and .11,
respectively, and they were .16, .20, -.07, .18, and .18
for the second data set. Changes, decreases and
increases, in estimates of dominance variances may be
due to increased information from relationships and
family types other than full-sibs. The assumption of
unrelated sire-dam subclasses might not be appropri-
ate for estimation of dominance variance in popula-
tions with many dominance relationships among sire-
dam classes.
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Introduction

Genetic evaluations for beef cattle currently use
additive genetic models even if nonadditive effects are
not negligible (e.g., Rodriguez-Almeida, 1995). The
most important nonadditive effect is probably the
dominance effect (e.g., Rodriguez-Almeida, 1995).
Setting up the inverted dominance relationship
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matrix, D71, needed in evaluation programs is difficult
from a computational point of view when dealing with
large data sets. Hoeschele and VanRaden (1991)
replaced D71 with the inverted sire-dam subclass
relationship matrix F~1, which does not correspond to
the actual dominance covariance structure but to the
covariances among sire-dam subclasses that represent
the average dominance effect of many hypothetical
full-sibs. The variance associated with this effect is
one-fourth of the dominance variance. This algorithm
provides a way to develop methods to estimate
dominance variance for large data sets but at the cost
of adding many subclasses that provide ties among
existing subclasses. Alternatively, only full-sib contri-
butions might be considered by using uncorrelated
sire-dam classes, because those contributions provide
the most important information for dominance.
However, no studies exist on the influence of the
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Table 1. Descriptive statistics of the weight traits by population

Data set
and trait n Mean, kg SD Minimum  Maximum
Hereford Line 1 (HL1)

Birth weight 4,155 35.9 4.69 18 52
Weaning weight 3,884 202.5 30.03 74 314
Hereford line-cross data (HLC)

Birth weight 8,065 345 4.73 10 56
Weaning weight 7,380 192.2 29.88 68 288

parental dominance relationships on estimation of
dominance variance. The objective of this study was to
evaluate the influence of use or lack of use of
dominance relationships on estimation of the variance
of dominance genetic effects using parental subclass
effects.

Materials and Methods

Materials

Two data sets were analyzed. The first data set
consisted of 4,155 birth weight (BWT) and 3,884
weaning weight (WWT, adjusted to 205 d) records
(Table 1) measured between 1935 and 1989 in the
USDA Line 1 Hereford population (HL1). The
Hereford Line 1 population was established at the
Fort Keogh Livestock and Range Research Laboratory
(Miles City, MT) in 1935 to provide inbred seedstock
for exploiting heterosis in commercial populations
(MacNeil et al., 1992). These data were chosen
because many dominance ties exist through the
occurrence of the same parental subclasses and
because inbreeding occurring in this closed line might
interfere with the estimation of dominance variance.
Reported inbreeding depression in this population is
high (MacNeil et al.,, 1992), and those authors
expected some variance due to dominance effects.
Table 2 shows the mean inbreeding coefficients for
animals with records and their dams in the present
study.

A second data set was obtained from the same
research station that consisted of results from a long-

time line-cross experiment between Hereford lines
(HLC) measured between 1934 and 1988. The data
consisted of 8,065 BWT records and 7,380 WWT
records (Table 1). Five lines were crossed that started
with inbred foundation animals. One of the lines was
the USDA Line 1, so some records in HL1 were also in
HLC. Also included in HLC were animals of the base
population and some immigrants. Animals in HLC
were less inbred on average than animals in HL1 even
though mean inbreeding coefficients were near 10%
(Table 2).

Methods

Accounting for inbreeding in dominance analyses
for medium to large populations is a computational
problem that is not yet solved (e.g., Hoeschele and
VanRaden, 1991), even if the algebraic problem has
been solved (e.g., Jacquard, 1974). The same situa-
tion is true for the covariance between additive and
dominance effects (Jacquard, 1974).

However, there are theoretical reasons why inbred
populations showing high inbreeding depression might
be interesting candidates for expressing dominance.
De Boer and Hoeschele (1993) showed that for a
biallelic locus with complete dominance and for
favorable gene frequencies that are about .20 or about
.80, large effects of inbreeding depression were linked
to high dominance variance.

The usual way to account approximately for in-
breeding in the mean and in the variance is to include
a fixed effect for inbreeding depression in the model
and to allow for inbreeding in construction of the

Table 2. Means and standard deviations of inbreeding in the
two data sets for animals with records and their dams

Animal Dam

Data set and trait n Mean, % SD Mean SD
Hereford Line 1 (HL1)

Birth weight 4,155 22.6 6.4 19.6 7.7
Weaning weight 3,884 22.4 6.5 194 7.8
Hereford line-cross data (HLC)

Birth weight 8,065 9.8 9.0 7.5 7.6
Weaning weight 7,380 9.7 8.0 7.4 7.6
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inverse of the additive genetic covariance matrix. De
Boer and Hoeschele (1993) showed by simulation that
this method only slightly reduces accuracies of predic-
tion compared to methods that take exact covariances
into account, even with high levels of inbreeding (De
Boer and Hoeschele, 1993), such as would be true for
the HL1 data.

Both data sets were analyzed using models that
accounted for inbreeding depression due to inbreeding
of the animal, but also inbreeding of the dam to
correct for maternal inbreeding depression because
BWT and WWT are considered to be influenced by
maternal effects. Additive relationship matrices were
constructed using rules defined by Quaas (1976) and
account for inbreeding in the relationship matrix.
Parental dominance pedigrees (Hoeschele and Van-
Raden, 1991) were defined as the occurrence of the
eight parental subclasses (sire x maternal grand-sire,
sire x maternal grand-dam, dam x paternal grand-
sire, dam x paternal grand-dam, maternal grand-sire
x paternal grand-sire, maternal grand-sire x paternal
grand-dam, maternal grand-dam x paternal grand-
sire, and maternal grand-dam x paternal grand-dam)
of a given sire x dam class. Coefficients of the inverse
of the parental dominance relationship matrix were
computed using the method outlined by Hoeschele and
VanRaden (1991).

Models

Variance components were estimated using a modi-
fied version of the MTDFREML program (Boldman et
al., 1995). In an attempt to avoid stopping at a local
maximum of the likelihood function, several restarts
were made. The general model was:

y = Xb +Wt+Za+Mm+ Mp + Pf+e [1]

where y is the vector of BWT or WWT, b is a vector of
fixed unknown year-sex of calf effects and age of dam
effects, t is a vector of fixed unknown linear regression
coefficients for the covariates, a is a vector of random
unknown additive direct effects of the animals, m is a
vector of random unknown additive maternal effects of
the animals, p is a vector of random unknown
permanent environmental effects of the dam, f is a
vector of random unknown parental(dominance) sub-
class effects, e is a vector of random unknown
uncorrelated residual effects, and X, W, Z, M, and P
are known matrices linking y with b, t, a, m, p, and f.
The X, Z, M, and P matrices and the b, a, m, p, f, and
e vectors are defined the same way for both data sets;
however, W and t are different for HLC because of
covariates for line and heterozygosity effects.

For the first data set covariates were calving day
within calving season expressed as day in the year,
inbreeding coefficient of the animal, and inbreeding
coefficient of the dam. Inbreeding covariates were
used in the model to get correct estimates of the

2887

underlying base population dominance variance as
explained by DeBoer and Hoeschele (1993).

For the second data set, additional covariates were
for line or group contribution (five lines plus groups
for base population and immigrants) to account for
line differences. Covariates for heterozygosity were
also included to account for potential heterosis occur-
ring in line-cross animals. Heterosis was computed
with the usual method as 1 - c4'cq where ¢cg and cq are
vectors of fractions of breed compositions for sire and
dam of the individual. To simplify the model, covari-
ates for line and heterozygosity effects were limited to
direct contributions and were not used for maternal
line and heterozygosity effects. There were two
reasons to do this. First, the maternal and direct
covariates would have been highly confounded. Se-
cond, earlier research showed that the covariates for
line and heterozygosity effects were small (Pariacote
et al., unpublished data). This result was expected
because the lines involved were all Herefords, and
heterosis is expected to be less within than between
breeds. The assumption of a common heterosis effect
for all line-crosses was made for two reasons. All
crosses were between animals from the same breed.
Also, consideration of different heterosis effects would
have resulted in 21 heterosis effects with correspond-
ing difficulty in estimation of these coefficients. The
estimation of all these coefficients would have been a
problem, even if the eventual effect of this simplifica-
tion needs to be acknowledged.

Covariances between records of full-sibs x and y can
be approximated as: cov(x,y) =.5a2 + m?2 + ¢2 + .25d2 +
.25aa2 + .125ad? + r, where a? is additive direct
genetic variance, m2 is additive maternal genetic
variance, ¢2 is maternal permanent environmental
variance, d2 is dominance genetic variance, aa? is
additive by additive genetic variance, and ad? is
additive by dominance variance. Other variances, and
covariances among genetic effects, can theoretically be
considered and are indicated as r. The general Model
[1] used takes the first four elements of cov(x,y) and
the covariance between additive direct and maternal
genetic effects into account. Dominance variance was
estimated as parental variance, f2. Separation of m?2
and c¢2 is possible through the introduction of the
additive relationship matrix relating maternal effects.
For estimation of d2 as 4*f2 real parental dominance
effects and confounded parental effects such as ¢2, aa?
or ad? need to be separated. To illustrate any
differences between models with parental subclass
effects and parental dominance subclass effects, the
two models used differed only in the assumption about
Var(f). For Model 1, Var(f) was assumed to be If2
(i.e., parental subclasses were assumed unrelated).
For Model 2, Var(f) was assumed to be Ff2, where F
is the parental dominance subclass relationship
matrix as defined by Hoeschele and VanRaden
(1991). The algorithm described by Hoeschele and
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VanRaden (1991) was used to establish the
dominance pedigree limiting recurrence to one round,
because this was considered sufficient to give nearly
full dominance relationships among parental sub-
classes.

Estimates with Models 1 and 2 were then used to
compare the parental subclass variances obtained
with or without considering dominance relationships.
The comparisons were not made with the full
dominance matrix as the objective was to test the use
of unrelated sire-dam or sire-maternal grand sire
classes for estimation of dominance variance (e.g.,
Brade and Groeneveld, 1996) compared with the
method described by Hoeschele and VanRaden
(1991).

Approximate Standard Errors

Approximate standard errors of results were ob-
tained using the method described by VanRaden et al.
(1992) adapted for models with maternal effects. This
method is based on the definition of covariances
between individuals. These covariance components
can be transformed to between- and within-family
variances in which family types are defined as full-sib,
parent-progeny, half-sib, and three-quarter-sib fami-
lies using variance estimates obtained or assumed.
Families were subdivided into maternal and paternal
family types because maternal effects were in these
models. Variances of quadratic forms associated with
family types were obtained using number of ideal size
families in data sets and the variances of the within-
and between-family variances. Ideal family size as
defined by VanRaden et al. (1992) is the most
informative family size. For every real family, the
equivalent was computed and then summed to get the
number of families of ideal size. The variances and
covariances among the family type variances were
then back-transformed to an approximate variance-
covariance matrix of the parameter estimates. The
diagonal elements were considered the squared stan-
dard errors of the variance component estimates. This
method has the advantage of simplicity and ease of
use but has several shortcomings and disadvantages.
The method considers several times any animal that
appears in several families and additional information
from relationships between families cannot be taken
into account. Therefore, sources of information are not
independent. All computations were done assuming a
balanced case, whereas real data never fit this
condition. The method does not account for the
estimation of fixed effects. Therefore, the estimates
are only approximate and are basically lowerbound
maximum likelihood type standard errors. Despite
these objections, this method was used as a way to
assess the precision of the estimates and therefore of
the differences in estimates of variances for Model 1
and Model 2.

GENGLER ET AL.

Results and Discussion

Descriptive Statistics

Both data sets were small, and absolute results for
estimates of dominance variance should be considered
cautiously. The objective was to consider changes in
estimates rather than absolute values of these esti-
mates to illustrate the potential importance of the
dominance relationship matrix.

Mean birth weights were similar in both data sets
(35.9 and 34.5 kg; Table 1), whereas WWT was
greater for the HL1 animals (202.5 kg) compared to
192.2 for HLC animals (Table 2). Standard deviations
were similar for both data sets for BWT and WWT.
Extreme values that were observed for WWT could be
explained by the variable climate in Montana.

Both data sets included animals with considerable
inbreeding, high in HL1 and moderate in HLC (Table
2). Average level of inbreeding of dams was always
less than average inbreeding of animals. Standard
deviations of inbreeding coefficients were similar,
showing a high variability in inbreeding in both
populations over time.

Contributions to Matrix of Family Variances

Estimation of standard errors required the matrix
of contributions of genetic effects to family variances.
Table 3 shows this matrix for Model 2. For Model 1,
only sire x dam interactions were considered, and
therefore contributions through three-quarter-sibs
were ignored. This method is approximate and does
not reflect the total gain in information by using
Model 2 rather than Model 1.

Variance Components

Phenotypic Variance. Table 4 shows the estimates of
phenotypic variance for Models 1 and 2 for both data
sets. Estimated phenotypic variances were always
slightly less for Model 2.

Additive Effects. Relative estimates of variance due
to additive direct and maternal genetic effects are
given in Table 4. Changes from Model 1 and Model 2
were small for additive effects. This result was
expected as reported by Misztal et al. (1997) and due
to the relative weakness of dominance information
compared to other random effects. Estimates of genetic
variance due to additive direct effects for BWT for the
HL1 data were similar to previous estimates reported
by MacNeil et al. (1992), who used the same data
without modeling dominance effects. Relative additive
maternal genetic variance was less than estimates
reported by these authors, and genetic correlation
between direct and maternal genetic effects was also
smaller. These differences may be because their model
did not include a permanent environmental effect of
the dam. Estimates for the HLC data set were similar
to HL1 for BWT showing only small differences in
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Table 3. Contribution of additive direct genetic, additive maternal genetic,
permanent environment of the dam, dominance genetic, and residual
effects to variances within (w) and between (f) families by family type

Family type Variance Direct Maternal Permanent Dominance Residual
Full-sibs w 5 0 0 .75 1
f 5 1 1 .25 0
Parent progeny
Animal-sire w 5 1 1 1 1
f 5 0 0 0 0
Animal-dam w 5 5 1 1 1
f 5 5 0 0 0
Half-sibs
Paternal w .75 1 1 1 1
f .25 0 0 0 0
Maternal w .75 0 0 1 1
f .25 1 1 0 0
Three-quarter-sibs
Sire-MGS? w .6875 .75 1 .9375 1
f 3125 .25 0 .0625 0
Sire-MGDP w .6875 75 1 .9375 1
f .3125 .25 0 .0625 0
Dam-PGS* w .6875 0 0 .9375 1
f 3125 1 1 .0625 0
Dam-PGD¢ w .6875 0 0 .9375 1
f 3125 1 1 .0625 0

aMGS = maternal grand-sire.
bMGD = maternal grand-dam.
‘PGS = paternal grand-sire.

dpGD = paternal grand-dam.

relative variances and a small positive instead of a
small negative genetic correlation between additive
direct and maternal genetic effects.

For WWT, important differences were observed
between estimates from HL1 and HLC data. Vari-
ances of genetic maternal effects were slightly larger
for HLC than for HL1, and variances of additive direct
genetic effects were slightly larger for HL1 than for

HLC; the most important difference was the moderate
negative genetic correlation between direct and mater-
nal additive genetic effects in HL1 (-.37 and -.38)
compared to the estimates for HLC (-.10 and -.07).

Estimates of relative additive genetic variances
were in the range reported by Rodriguez-Almeida et
al. (1995), and with maternal genetic variance nearly
equal to direct additive genetic variance.

Table 4. Estimates of relative variance components and genetic correlations with approximate standard errors

Relative variance components?®

Data set

and trait Model a2 (% SE) r(am) m?2 (xSE) ¢ (£SE) d® (£ SE) pVP

Hereford line 1 (HL1)

BWT® 1 35 (£ .07) -.05 A3 (+£.05) .03 (% .04) .37 (% .17) 17.96
2 35 (£ .07) -.02 13 (£ .05) .03 +.04) 25 (% .16) 17.62

wwTd 1 .20 + .09) -.38 .16 + .06) 19 (£ .06) .00 (% .19) 529.7
2 20 (£ .09) -.37 A5 (£ .06) .19 +.06) .11 (z .18) 524.6

Hereford line cross data (HLC)

BWT® 1 39 (% .05) .01 A1 (+.03) .05 +.03) .07 (% .12) 17.85
2 39 (% .05) .04 11 (£ .03) .06 + .03) 14 (x.11) 17.68

wwTd 1 16 (% .06) -.10 21 (% .05) .18 + .04) .01 (% .12) 521.4
2 16 (= .06) -.07 20 (% .04) .18 + .04) A8 (% .11) 514.5

aa2 = direct heritability, r(am) = correlation between direct and maternal effects, m? = maternal heritability, ¢ = relative permanent

environment of the dam variance, d?
bpV = phenotypic variance in kg2
CBWT = birth weight.

HWWT = weaning weight.

relative dominance variance.
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Permanent Environmental Effects of the Dam. Some
analyses have found this effect rather unimportant
(e.g., Rodriguez-Almeida et al., 1995), a result
consistent here only for BWT, where for both popula-
tions the relative variances were less than or equal to
.06. For WWT in both populations, the variance of
nongenetic effects of the dams was greater than
(HL1) or nearly equal (HLC) to that for genetic
maternal effects.

Dominance Effects. Estimates of dominance vari-
ances reported in Table 4 are defined as four times the
parental subclass variance. The estimate for BWT for
HL1 was larger for Model 1 (.37, parental subclass
model, classes considered unrelated) than for Model 2
(.25, parental subclass model with complete
dominance relationships). Approximate standard er-
rors for these estimates were large. Much larger data
sets would be required to reduce the standard errors to
the level of standard errors of the other variances
(Misztal, 1997), even though the data sets, HL1 and
HLC, have more dominance relationships than field
data sets. The estimate for Model 2, which can be
considered the more likely dominance estimate, had a
confidence range, defined as estimate plus or minus
one standard error, that did not include zero.

For the HLC population, estimates of dominance
variance were less for BWT than for the HL1
population. Difference between Model 1 and Model 2
was also important with the estimate increasing from
.07 for Model 1 to .14 for Model 2. The relative change
in estimate of dominance variance was about the same
in both populations, but in a different direction. The
estimate plus and minus the standard error did not
include zero for Model 2.

For WWT, the pattern of estimates was different. In
the HL1 population, Model 1 showed an estimate of
apparent relative variance due to dominance effects of
zero, but with Model 2 the estimate was .11. The
influence of the dominance relationship matrix see-
med to be important. Standard errors were large (.18
and .19). A similar pattern was observed for the HLC
data with an increase in the estimate from .01 to .18
due to the introduction of the relationship matrix
(Model 2) for HLC. The range of this estimate (Model
2), defined as the estimate plus or minus the standard
error, did not include zero.

There are at least three possible reasons for the
changes in estimates of dominance variance with the
complete dominance relationships that were observed.
First, changes may be due to sampling errors. Second,
changes may be due to the fact that the apparent
dominance variance estimate for Model 1 may contain
other than dominance variances. Third, the differences
may also be a result of the increased amount of
dominance information from the use of the dominance
relationship matrix relating full-sib families to each
other and including information from other family
types. The data used were identical, and Models 1 and
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2 differed only by Var(f); thus, the first reason may
have only limited influence. If the second reason had a
major impact, apparent dominance should have been
reduced and redistributed to other variances. But all
other genetic variances and covariances, as well as the
variance of permanent environmental effects of the
dam, were stable, and nearly all changes occurred
between residual and apparent dominance variance
components. Only for BWT for HL1 was apparent
dominance variance reduced, indicating possible con-
founding with higher-order genetic effects. This con-
founding should be less for Model 2 because it
accounts for most dominance (co)variances. The third
reason might be considered to be the most likely origin
of the differences.

The simple idea to use unrelated sire x dam or sire
x maternal grand-sire classes is not new (e.g., Allaire
and Henderson, 1965) and is still used (e.g., Brade
and Groeneveld, 1996). These results show that this
simplification might not be a good option, even though
most dominance information seems to be from sire x
dam classes or from sire x maternal grandsire classes
for dairy cattle. The variance of apparent dominance
effects obtained through the use of unrelated sire x
dam subclasses may be confounded with variances of
higher order so that information coming through the
dominance relationship matrix, relating sire x dam
classes and including other family types, may affect
the estimates obtained of dominance genetic effects.

Implications

The results indicate that dominance effects may
exist for birth weight and weaning weight in Hereford
cattle. Standard errors of the estimates, however,
were large. Studies involving more animals are
needed. The main objective of this study, however, was
to show the influence that the use of the parental
dominance relationship matrix may have. Estimates
of dominance variances from all four analyses changed
considerably, going from a simple model with un-
related sire x dam classes to a model with complete
parental dominance relationships. The short-cut
method, therefore, may not be useful for all dominance
studies, even if most dominance information seems to
be from sire x dam classes. A similar effect of the
dominance relationship matrix might be expected for
genetic evaluation models that include dominance
genetic effects.
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